Exercise Sheet 3

Question 1.

(a) Let G be a finite p-group. Show that if $Z_{2}(G)$ is cyclic, then either G is cyclic or $p=2$ and G has an cyclic subgroup of index 2 . Using the lecture notes, determine the finite p-groups G for which $Z_{2}(G)$ is cyclic.
(b) Suppose that G is a finite p-group such that $\left|G^{\prime} / \Phi\left(G^{\prime}\right)\right| \leqslant p^{2}$. Then $\left[G^{\prime}, G^{\prime}\right]$ is cyclic and G^{\prime} has nilpotency class at most 2. (You may use that if $K \cong C_{p} \times C_{p}$ then $\operatorname{Aut}(K) \cong \mathrm{GL}_{2}(p)$ and $\left|\mathrm{GL}_{2}(p)\right|$ is divisible by p, but not by p^{2}.)
(c) Suppose that G is a finite p-group with $|G|=p^{n}$ with $n>1$. Assume that there is $1<m<n$ such that every subgroup of G of order p^{m} is cyclic. Prove that either G is either cyclic or generalized quaternion.

Question 2.

(a) Show that $\mathfrak{X}(G)$ is the unique largest subgroup of G admitting a Q-series.
(b) Let G be a finite p-group. Set $\mathcal{D}(G)$ to be the set of abelian subgroups A of G such that if $x \in G$ and $\langle A, x\rangle$ is nilpotency class two, then $[A, x]=\{e\}$ for all $x \in G$. Define $D^{*}(G):=\langle\mathcal{D}(G)\rangle$
(i) Show that $D^{*}(G)$ is a characteristic subgroup of G.
(ii) Show that if $D^{*}(G) \leq H \leq G$ then $D^{*}(G) \leq D^{*}(H)$.
(iii) Show that $D^{*}(G)$ is abelian.
(iv) Show that $D^{*}(G)$ is the unique maximal member of $\mathcal{D}(G)$.
(v) (Harder) Show that $Z(G) \leq D^{*}(G) \leq Z(J(G))$ when $p=2$.

Question 3.

Let G be a p-group and let $A \in \mathcal{A}_{e}(G)$ have order p^{m} for some $m \in \mathbb{N}$. For $i \in\{0, \ldots, m-1\}$ set $\mathcal{A}_{e}^{i}(G)$ to be the set of abelian subgroups of G of order p^{m-i} and $J_{e}^{i}(G):=\left\langle\mathcal{A}_{e}^{i}(G)\right\rangle$. Then $\mathcal{A}_{e}(G)=\mathcal{A}_{e}^{0}(G)$ and $J_{e}(G)=J_{e}^{0}(G)$.
(a) Show that for all $B \in \mathcal{A}_{e}(G)$, we have that $\Omega_{1}\left(C_{G}(B)\right)=B$.
(b) Show that $J_{e}^{i}(G) \leq J_{e}^{j}(G)$ whenever $i \leqslant j$ and $i, j \in\{0, \ldots, m-1\}$.
(c) Show that $\Omega_{1}\left(C_{G}\left(J_{e}^{i}(G)\right)\right)=\Omega_{1}\left(Z\left(J_{e}^{i}(G)\right)\right)$ for all $i \in\{0, \ldots m-1\}$.
(d) Show that $\bigcap_{A \in \mathcal{A}_{e}(G)} A=\Omega_{1}\left(Z\left(J_{e}(G)\right)\right)$.
(e) Show that if $J_{e}^{i}(G) \leq H \leq G$, then $J_{e}^{i}(G)=J_{e}^{i}(H)$ for all $i \in\{0, \ldots, m-1\}$.

Question 4.

Cook up a characteristic subgroup of your own accord. What properties does it satisfy? Is it always isomorphic to a known characteristic group?

