Exercise Sheet 3

Question 1.

- (a) Let G be a finite p-group. Show that if $Z_2(G)$ is cyclic, then either G is cyclic or p = 2 and G has an cyclic subgroup of index 2. Using the lecture notes, determine the finite p-groups G for which $Z_2(G)$ is cyclic.
- (b) Suppose that G is a finite p-group such that $|G'/\Phi(G')| \leq p^2$. Then [G', G'] is cyclic and G' has nilpotency class at most 2. (You may use that if $K \cong C_p \times C_p$ then $\operatorname{Aut}(K) \cong \operatorname{GL}_2(p)$ and $|\operatorname{GL}_2(p)|$ is divisible by p, but not by p^2 .)
- (c) Suppose that G is a finite p-group with $|G| = p^n$ with n > 1. Assume that there is 1 < m < n such that every subgroup of G of order p^m is cyclic. Prove that either G is either cyclic or generalized quaternion.

Question 2.

- (a) Show that $\mathfrak{X}(G)$ is the unique largest subgroup of G admitting a Q-series.
- (b) Let G be a finite p-group. Set $\mathcal{D}(G)$ to be the set of abelian subgroups A of G such that if $x \in G$ and $\langle A, x \rangle$ is nilpotency class two, then $[A, x] = \{e\}$ for all $x \in G$. Define $D^*(G) := \langle \mathcal{D}(G) \rangle$.
 - (i) Show that $D^*(G)$ is a characteristic subgroup of G.
 - (ii) Show that if $D^*(G) \le H \le G$ then $D^*(G) \le D^*(H)$.
 - (iii) Show that $D^*(G)$ is abelian.
 - (iv) Show that $D^*(G)$ is the unique maximal member of $\mathcal{D}(G)$.
 - (v) (Harder) Show that $Z(G) \leq D^*(G) \leq Z(J(G))$ when p = 2.

Question 3.

Let G be a p-group and let $A \in \mathcal{A}_e(G)$ have order p^m for some $m \in \mathbb{N}$. For $i \in \{0, \ldots, m-1\}$ set $\mathcal{A}_e^i(G)$ to be the set of abelian subgroups of G of order p^{m-i} and $J_e^i(G) := \langle \mathcal{A}_e^i(G) \rangle$. Then $\mathcal{A}_e(G) = \mathcal{A}_e^0(G)$ and $J_e(G) = J_e^0(G)$.

- (a) Show that for all $B \in \mathcal{A}_e(G)$, we have that $\Omega_1(C_G(B)) = B$.
- (b) Show that $J_e^i(G) \leq J_e^j(G)$ whenever $i \leq j$ and $i, j \in \{0, \dots, m-1\}$.
- (c) Show that $\Omega_1(C_G(J_e^i(G))) = \Omega_1(Z(J_e^i(G)))$ for all $i \in \{0, ..., m-1\}$.

- (d) Show that $\bigcap_{A \in \mathcal{A}_e(G)} A = \Omega_1(Z(J_e(G))).$
- (e) Show that if $J_e^i(G) \le H \le G$, then $J_e^i(G) = J_e^i(H)$ for all $i \in \{0, \dots, m-1\}$.

Question 4.

Cook up a characteristic subgroup of your own accord. What properties does it satisfy? Is it always isomorphic to a known characteristic group?