Exercise Sheet 2

Question 1.

- (a) Let G be a regular finite p-group. Show that every subgroup and every quotient of G is also regular.
- (b) Prove that a finite 2-group is regular if and only if it is abelian.
- (c) Let $G = \langle (1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7)(2, 5, 8)(3, 6, 9) \rangle \leq \text{Sym}(9).$
 - (i) Show that $G \cong C_3^3 \rtimes C_3$ (if you know the language, G is the wreath product of C_3 by C_3 written $C_3 \wr C_3$).
 - (ii) Witness an element of G of order 9 and conclude that G is not regular.
- (d) Let G be a finite regular p-group. Show that $[\Omega_i(G), \mho_j(G)] \leq \Omega_{i-j}(G)$ with the convention $\Omega_r(G) = \{e\}$ if $r \leq 0$.
- (e) Show that either of the following conditions implies that a finite p-group G is regular:
 - (i) $|G'/\mho_1(G')| < p^{p-1}$; or
 - (ii) $|\Omega_1(G)| < p^{p-1}$.

Question 2.

- (a) Prove that whenever n > 3, $\text{SDih}(2^n)$ has exactly three maximal subgroups: a cyclic group $\langle x \rangle$, a dihedral group $\langle x^2, y \rangle$, and a generalized quaternion group $\langle x^2, xy \rangle$.
- (b) Determine $Z(Mod(p^n))$, $\Omega_1(Mod(p^n))$ and $Mod(p^n)'$ when n > 3. Deduce that $Mod(p^n)$ has class 2 whenever n > 3.
- (c) Describe the characteristic subgroups of Q_8 , and compare them to the characteristic subgroups of Q_{2^n} when n > 3.

Question 3.

- (a) Let G be a finite p-group. Say that G is semi-extraspecial if for every maximal subgroup Z of Z(G), we have that G/Z is an extraspecial group. (We have that convention that extraspecial groups are also semi-extraspecial).
 - (i) Show that if K < G', then G/K is semi-extraspecial.
 - (ii) Show that G is a special group.
 - (iii) Show that if $|G/G'| = p^{2a}$ and $|G'| = p^b$, then $b \leq a$.

- (b) Describe the non-abelian groups of order p^3 for all primes p.
- (c) Show that $Dih(8) \circ C_{2^n} \cong Q_8 \circ C_{2^n}$.
- (d) Show that $Q_8 \circ Q_8 \cong \text{Dih}(8) \circ \text{Dih}(8) \not\cong Q_8 \circ \text{Dih}(8)$ and $p_+^{1+2} \circ p_-^{1+2} \cong p_-^{1+2} \circ p_-^{1+2} \not\cong p_-^{1+2} \circ p_-^{1+2}$.